

Accredited by NAAC(Cycle–III) with 'A+' Grade (Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC & CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME : COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit II- LOGICAL GATES

Topic 5: De Morgan's Law

De Morgan's First Law

- ✓ De Morgan's First Law states that (A.B)' = A'+B'.
- ✓ The first law states that the complement of the product of the
- variables is equal to the sum of their individual complements of a variable.
- ✓ The truth table that shows the verification of De Morgan's First

law is given as follows:

A	В	A'	B'	(A.B)′
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

De Morgan's Second Law

- \checkmark De Morgan's Second law states that (A+B)' = A'. B'. \checkmark The second law states that the complement of the sum of variables is equal to the product of their individual complements of a variable.
- ✓ The following truth table shows the proof for De Morgan's second law.

А	В	A'	B′	(A+B)′	A'. B'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Question: Simplify the following expression:

 $c + \overline{BC}$ Solution:

Given:

 $C + B\overline{C}$ According to Demorgan's law, we can write the above expressions as

 $C + (\bar{B} + \bar{C})$ From Commutative law:

 $(C + \overline{C}) + \overline{B}$ From Complement law

 $1 + ar{B} = 1$ Therefore,

 $C + B\overline{C} = 1$

8/12/2023

Draw a truth table for A(B+D).

Solution: Given expression A(B+D).

А	В	D	B+D	A(B+D)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

References

- 1.M.Morris Mano, "Computer System Architecture" 3rd Edition, Prentice Hall of India ,2000, ISBN-10: 0131663631
- 2. V.K. Puri, –DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 978-0074633175
- Organization 3.William Stallings, "Computer and Architecture, for Performance" PHI/ Pearson Education North Asia Ltd., 10th Designing Edition 2016, ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8.

Thank You

